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Research on the influence of Molybdenum Diselenide (MoSe2) coating on platinum (Pt) to performing
dye-sensitized solar cell (DSSC) with the structure of TiO2/Dye/LxMoSe2Pt, (0 � x � 5) is reported. The
hydrothermal method has successfully synthesized the TiO2 film with square and porous morphology
on the indium titanium oxide (ITO) surface. Four peaks of the Raman Scattering detected from the semi-
conductor confirm the formation of TiO2 film. The liquid-phase deposition (LPD) also successfully pre-
pared the Pt film. Onto the prepared Pt, the MoSe2 was coated to produce LxMoSe2Pt (0 � x � 5) and
then use them as the counter electrode (CE). The best DSSC devices with TiO2/Dye/L2MoSe2Pt structures
have resulted in current–density, Voc, and solar cell performance of 11.204 mA/cm2, 0.66 V, and 2.967%,
respectively. The Bode graph confirmed this device has the longest lifetime, proven by the highest peak
rise in the lowest frequency. Besides, high-frequency also shows the device has low resistance, useful for
accelerating the electrons flow and enhancing DSSC performance.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

DSSC is a solar device with semiconductor-based which deter-
mined by the effectiveness of the photo-physiochemical phe-
nomenon on the semiconductor [1]. As a third-generation solar-
cell has several advantages, such as cheaper, simple-production,
and high-efficiency [2]. We believe the efficiency might be
enhanced by modifying the key components of the DSSC, such as
semiconductor, CE, and electrolyte. Semiconductors which have
wide band-gap energy such as TiO2 [3] with the sense of dye-
sensitized material, and the CE with high electro-catalytic, good
conductivity and stable [2] could further improve the DSSC
performance.

Pt is a popular CE in DSSC application due to it has high effi-
ciency [4,5] compared to Carbon and Graphene [6–18]. However,
an effort to further enhance the Pt properties by adding or attach
them to other materials has been reported. For instance, Graphene
(G-Pt) and reduced graphene oxide/rGO (rGO-Pt), resulting in the
efficiency increased around 0.8% and 0.9%, respectively [19].
Besides, Gong et al. added one-layer of Pt on Graphene (GNS) [6],
resulting in the efficiency increased from 4.76% (Pt) to 6.09%
(GNS/Pt). Besides, Cheng et al. also reported the MoS2 addition
(Pt/MoS2) producing the device performance increase of 0.6%
[20]. In this research, we report the use of MoSe2 as a coated layer
on platinum and then used them as a CE on the DSSC device. Since
it has a very active electrocatalytic, good conductivity [21] and
resistant to corrosion caused by electrolytes [22]. The best perfor-
mance obtained is 2.967% with the VOC and fill-factor generated by
0.66 V and 40.11%, respectively.
2. Material and methods

2.1. Synthesis TiO2 and Pt + MoSe2 (LxMoSe2Pt, 0 � x � 5)

We purchased all chemicals in this work from Sigma-Aldrich.
We synthesized TiO2 semiconductor on the ITO substrate by using
a growth solution which consists of 5 mL Ammonium-
Hexafluorotitanate and 5 mL boric acid with deionized (DI) water.
The detail of the synthesis process has been well-explained in the
previous report [3]. Pt films were synthesized using the LPD
method on the ITO substrate. We started the Pt synthesis from
seeding 3 times by using a solution of L-Ascorbic Acid and
potassium tetrachloroplatinate (K2PtCl4) with a temperature of
50 �C for 2 h. After that, we continued to Pt growth, using a solution
of K2PtCl4, L-Ascorbic Acid, Polyvinyl pyrrolidone, and natrium
hydroxide with a temperature of 50 �C for 5 h. Last, the prepared
Pt was then annealed in an oven for 1 h at 250 �C. Next, the
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Fig. 1. A-D) are the FESEM image of a TiO2 semiconductor film, and E) The Raman Scattering Spectra of TiO2.

Fig. 2. A). The FESEM image of Pt film (magnification of 50,000 times), B). DSSC array with the MoSe2 coating. C). The J-V curve of DSSC devices with the structure TiO2/Dye/
LxMoSe2Pt (0 � x � 5).
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resultant Pt was coated by MoSe2, forming the LxMoSe2Pt
(0 � x � 5) film using the LPD method. The Pt film was put into
the growth-solution (0.5 M of Hexamethylenetetramine 0.5 M,
0.05 M of Ammonium Tetrathromolybdate, 0.1 M of Sodium Boro-
hydrate and 0.01 M of Selenium) and synthesized using water-bath
at 90 �C for 30 min. We repeated these steps to produce two until
five layers of MoSe2. Last, the coated Pt was annealed by hydrogen
flow at 300 �C for 3 h. During the synthesis process, the morphol-
ogy of TiO2 and Platinum film was observed with a FESEM and
Raman Scattering as well.
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2.2. Preparation of DSSC devices with the structured of TiO2/Dye/
LxMoSe2Pt (0 � x � 5)

We designed DSSC devices as Fig. 2B to see the influence of
LxMoSe2Pt (0 � x � 5) film as a CE on the device performance.
The TiO2 semiconductor as a photoanode is assembled (after
immersed in dye solution (0.05 mM N719) at room temperature
for 15 h) with a CE using a metal clamp. A para-film with a circle
hole of 0.23 cm2 was sandwiched between the TiO2 and the Lx-
MoSe2Pt and injected the electrolyte solution. Last, the current-
voltage (J-V) curve of the DSSC was obtained using the Gamry
instrument under illumination by simulated sunlight with an
intensity of 100 mW cm2 to characterize the device performance.
Fig. 3. Bode graphics of 6 DSSC devices with structure TiO2/Dye/LxMoSe2Pt
(0 � x � 5).
3. Results and discussion

FESEM image shows the synthesized TiO2 successfully covered
the entire ITO surface (see Fig. 1A). The TiO2 particles have a mor-
phology that resembles a square shape (Fig. 1B, C) with porous
structures and varying particle sizes (see Fig. 1C and D). The porous
structure is believed caused by the use of high temperatures during
the growth process. This condition is useful to absorb more dye
and enhanced DSSC performance [3]. Fig. 1E shows the Raman
Scattering spectrum consisting of 4 peaks of 141 cm�1, 393 cm�1,
513 cm�1, and 636 cm�1 with one peak having high intensity
between 100 and 800 cm�1. The resultant peaks are comparable
with the research results of Tian et al. [23] and confirm the forma-
tion of TiO2.

Fig. 2A is the FESEM image of Pt with asymmetrical structures
(particle size of 156 ± 16 nm) and covers the entire ITO surface.
Next, the synthesized LxMoSe2Pt (0 � x � 5) was used as CE in
DSSC devices with the structured TiO2/Dye/LxMoSe2Pt (see
Fig. 2B). The J-V curve of DSSC and the photovoltaic parameter
are described in Fig. 2C and Table 1, respectively. From the Table 1
shows the DSSC performance start from 2.858%, and then
decreased to 2.364% when using L1MoSe2Pt as CE. We believed, it
occurred as an effect of the heating repetition during MoSe2 coat-
ing, and causing the Pt structure damaged and reduced film adhe-
sion [24]. Interestingly, the DSSC performance increase when using
the L2MoSe2Pt as CE to 2.967%. In this stage the MoSe2 coating
rather thick, and covering the Pt structure from directly exposed
to high temperature, improving the surface area and their conduc-
tivity [6]. Besides, the increasing of the surface area providing sen-
sitization of dye materials, speed-up the electrolyte redox reaction
[25], and producing higher performance [26]. Then, the DSSC per-
formance decrease again with the number of MoSe2 coating layer
increased (L3MoSe2Pt, L4MoSe2Pt, and L5MoSe2Pt). Besides the pre-
vious reason, since the addition of each layer of MoSe2 does not fol-
lowed by the annealed process, causing the bond between them
still fragile and easily damaged also causing this phenomenon.
The best DSSC performance shows 0.11% higher than the first
devices and confirming the coated of MoSe2 are successfully cata-
lyst the Pt film [2,27]. Since the TiO2, dye-materials [16,18], and
electrolyte-selection are far from being optimized, applying the
Table 1
The photovoltaic parameters of DSSC device with the structure TiO2/Dye/LxMoSe2Pt
(0 � x � 5).

CE Voc (V) Jsc (mA/cm2) FF (%) Eff (%)

L0MoSe2Pt 0.67 13.635 31.26 2.858
L1MoSe2Pt 0.65 10.861 33.47 2.364
L2MoSe2Pt 0.66 11.204 40.11 2.967
L3MoSe2Pt 0.66 13.426 32.92 2.921
L4MoSe2Pt 0.66 6.600 37.67 1.644
L5MoSe2Pt 0.63 5.078 42.13 1.350
Pt in optimized device will enhanced the DSSC performance. These
results also support by Bode graphs (see Fig. 3) which shows that
this device produces the highest peak on the lowest frequency.
Its means, high-frequency peaks show the device has small resis-
tance and highest lifetime compared to other [28]. Besides, the
small resistance leading to speed-up the flow of electrons [25],
and producing the DSSC devices with the higher performance [29].
4. Conclusion

The influence of MoSe2 coated onto Pt film to produce LxMoSe2-
Pt (0 � x � 5) as CE on the DSSC performance has been carried out.
The best DSSC devices with the structure of TiO2/Dye/L2MoSe2Pt
have resulted in current density, Voc, and solar cell performance
of 11.204 mA/cm2, 0.66 V, and 2.967%, respectively. Bode graph
confirming the device structure has the highest lifetime because
of the highest peak is detected on the lowest frequency. Besides,
the high-frequency peaks also show small device resistance, lead-
ing to accelerating the electrons flow and enhanced DSSC
performance.
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